Solid State Analog Quantum Simulation Devices Possible with Zyvex Labs’ ZyVector™ Controller
2D Quantum Metamaterials Proceedings of the 2018 NIST Workshop
NIST, Gaithersburg, USA , 25 – 26 April 2018 World Scientific
Experimental Realization of an Extended Fermi-Hubbard Model Using a 2D Lattice of Dopant-based Quantum Dots. Wang, X., Khatami, E., Fei, F., Wyrick, J., Namboodiri, P., Kashid, R., Rigosi, A. F., Bryant, G., & Silver, R. (2022). Nature Communications, 13(1), 6824. https://doi.org/10.1038/s41467-022-34220-w
Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Hensgens, T., Fujita, T., Janssen, L., Li, X., Van Diepen, C. J., Reichl, C., Wegscheider, W., Das Sarma, S., & Vandersypen, L. M. K. (2017). 548(7665), 70–73. https://doi.org/10.1038/nature23022
Quantum simulation of the Hubbard model with dopant atoms in silicon. Salfi, J., Mol, J. A., Rahman, R., Klimeck, G., Simmons, M. Y., Hollenberg, L. C. L., & Rogge, S. (2016). Nature Communications, 7, 11342. https://doi.org/10.1038/ncomms11342
Engineering topological states in atom-based semiconductor quantum dots. Kiczynski, M., Gorman, S. K., Geng, H., Donnelly, M. B., Chung, Y., He, Y., Keizer, J. G., & Simmons, M. Y. (2022). Nature, 606(7915), 694–699.https://doi.org/10.1038/s41586-022-04706-0
An extended Hubbard model for mesoscopic transport in donor arrays in silicon. Le, N. H., Fisher, A. J., & Ginossar, E. (2017). 1–13. http://arxiv.org/abs/1707.01876
Fabrication techniques for Solid State Analog Quantum Simulation Devices
Enhanced Atomic Precision Fabrication by Adsorption of Phosphine into Engineered Dangling Bonds on H-Si Using Scanning Tunneling Microscopy and Density Functional Theory. Wyrick, J., Wang, X., Namboodiri, P., Kashid, R. V., Fei, F., Fox, J., & Silver, R. M. (2021). ACS Nano 2022, 16, 11, 19114–19123. https://doi.org/10.1021/acsnano.2c08162
Atomic ‑ precision advanced manufacturing for Si quantum computing. Bussmann, E., Butera, R. E., Owen, J. H. G., Randall, J. N., Rinaldi, S. M., Baczewski, A. D., & Misra, S. (2021). MRS Bulletin, 46(July), 1–9. https://doi.org/10.1557/s43577-021-00139-8
Al-alkyls as acceptor dopant precursors for atomic-scale devices. Owen, J. H. G., Campbell, Q., Santini, R., Ivie, J. A., Baczewski, A. D., Schmucker, S. W., Bussmann, E., Misra, S., & Randall, J. N. (2021). Journal of Physics: Condensed Matter, 33(46), 464001. https://doi.org/10.1088/1361-648X/ac1ddf
Atom‐by‐Atom Fabrication of Single and Few Dopant Quantum Devices. Wyrick, J., Wang, X., Kashid, R. V., Namboodiri, P., Schmucker, S. W., Hagmann, J. A., Liu, K., Stewart, M. D., Richter, C. A., Bryant, G. W., & Silver, R. M. (2019). Advanced Functional Materials, 29(52), 1903475.
https://doi.org/10.1002/adfm.201903475
Hole in one: Pathways to deterministic single-acceptor incorporation in Si(100)-2 × 1 Campbell, Q., Baczewski, A. D., Butera, R. E., & Misra, S. (2022. AVS Quantum Science, 4(1), 016801.
https://doi.org/10.1116/5.0075467
Atomically precise digital e-beam lithography. Randall, J. N., Owen, J. H., Fuchs, E., Saini, R., Santini, R., & Moheimani, S. O. R. (2020). In E. M. Panning & M. I. Sanchez (Eds.), Novel Patterning Technologies for Semiconductors, MEMS/NEMS and MOEMS 2020 (Issue March 2020, p. 31). SPIE.